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Abstract. We examine the results of a recent experiment in which non-equilibrium acoustic
phonons were used to probe an electron gas confined to a split-gate GaAs/AlGaAs quantum
wire. The results showed a resistance decrease following the onset of the interaction between
the confined electron gas and incident phonon beam and also peaks in resistance decrease
versus gate voltage which approximately coincided with the conductance step edges. We obtain
qualitative agreement with experiment using a model which assumes electron heating due to
phonon absorption, together with a wire resistance temperature dependence arising from either (i)
impurity scattering in the presence of electron–electron interactions, or (ii) weak localization with
phase relaxation due to electron–electron scattering. Magnetoconductance measurements will be
needed in order to determine which of these two gives the dominant temperature dependence.
A third possible mechanism, the energy dependence of Coulomb scattering from remote donor
impurities, gives rise to a resistance increase and is thus ruled out. Taking into account phonon
focusing, we estimate the electron temperature increase for the heater geometry and heater
temperature of the experiment and find that it is much smaller than the experimental estimate.
Several possible explanations are given for this discrepancy.

1. Introduction

In a recent experiment [1], the interaction between an acoustic phonon beam and quantum
wire electron gas was investigated for the first time. A split-gate GaAs/AlGaAs wire was
used, with constantan film deposited on the back surface of the GaAs substrate directly
opposite the wire generating the phonon beam when heated above the ambient temperature
(see figure 1). The response of the electron gas was probed by measuring the change in wire
resistance. Contrary to expectation, adecreasein resistance was observed with the onset of
the interaction between the wire electrons and incident phonon beam. Furthermore, peaks
in the resistance decrease were observed and these occured at approximately the same gate
voltage values as for the conductance step edges.

From the observed resistance decrease we can immediately conclude that the electron–
impurity backscattering rate (note forward scattering does not affect the wire resistance)
must exceed the electron–phonon backscattering rate for the conditions of the experiment.
There are four different electron–impurity scattering mechanisms which can give rise to a
resistance decrease: (1) Coulomb scattering from remote donor impurities [2, 3], (2) impurity
scattering in the presence of electron–electron interactions [4–6], (3) weak localization with
phase relaxation governed by electron–electron scattering, (4) weak localization with phase
relaxation governed by electron–phonon scattering (see, e.g., the review by Bergmann [7]
and references therein).
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Figure 1. Schematic diagram of the experiment. See reference [1] for a detailed description.

Which of these mechanisms is the dominant cause for the resistance decrease depends,
among other wire characteristics, on the electron–impurity backscattering length; weak (and
strong) localization effects are expected to dominate when the backscattering length is
much smaller than the wire length and also when the ambient and heater temperatures are
sufficiently low. From the measured areal electron density (4.4 × 1015 m−2) and mobility
(100 m2 V−1 s−1) in the absence of an applied gate voltage, the transport length of the
two-dimensional electron gas (2DEG) is determined to be about 10µm—the same as the
wire length. Thus, with the reduction in electron density and hence reduced screening of the
remote donor impurities when the gate voltage is applied [8], it might be expected that the
backscattering length of the confined electrons is smaller than the wire length. On the other
hand, however, the quantum wire has far fewer states for the electrons at the Fermi level
to backscatter into, than does the 2DEG and it is therefore possible that the backscattering
length of the confined electrons exceeds the wire length [9].

Thus, it is not immediately obvious which of the above four mechanisms is the
dominant cause. Further experiments to characterize the wire are required. For example,
magnetoconductance measurements would be able to determine whether or not the resistance
decrease is a weak localization effect [7]. Without the benefit of such experiments, however,
it is necessary that we examine each of the four scattering mechanisms in turn. Weak
localization with phase relaxation due to electron–phonon scattering has already been
considered elsewhere [10], and so we will have little further to say about this mechanism
in the present work. As we shall find out in the next section, scattering mechanisms (1)–(3)
each give rise to qualitatively different resistance change versus gate voltage dependencies
and, from a knowledge of the qualitative behaviour, we can almost certainly rule out
Coulomb scattering from remote impurities as the dominant cause.

For scattering mechanisms (1)–(3), the resistance change results from a change in the
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electron distribution. As a first approximation, the electrons are assumed to be in thermal
equilibrium and absorption of phonons from the incident beam causes an increase in electron
temperature. In section 3, we determine the magnitude of the electron temperature increase
for the given heater geometry and other parameters of the experiment. We shall find
that the calculated temperature increase is about two orders of magnitude smaller than the
experimental value. We consider the various possible reasons for this discrepancy.

In common with the recent experiment, we restrict ourselves to the case where the heater
is located directly opposite the wire. One of the advantages of non-equilibrium phonon
experiments over simpler wire heating experiments is the possibility to obtain information
concerning the phonon momentum angular dependence of the electron–phonon interaction.
As we shall see in section 3, such information can be obtained by varying the heater
dimensions. Of course, to obtain the most information concerning the angular dependence,
the position of the heater with respect to the wire should be varied as well.

In the conclusion, we outline the main points of our analysis and suggest some possible
extensions to the experiment in [1] in order to improve our understanding of the electron–
phonon interaction in quantum wires. The appendix contains the technical details of the
conductance calculations.

2. The scattering mechanisms

The gate voltage affects the wire conductance by changing both the Fermi levelEF and
wire width [11, 12]. In the following subsections, we shall investigate theEF dependence
of the conductance change due to interaction with the incident phonon beam, keeping the
wire width fixed. The wire width dependence is not expected to be qualitatively different
from theEF dependence. For each of the three scattering mechanisms, we shall be primarily
concerned with the qualitative features of the conductance change versusEF, in particular
whether the change is positive and peaks close to a subband edge. In the final subsection
we compare theEF dependence of the conductance change for each of the three scattering
mechanisms with that found in the experiment [1].

The conductance change is a consequence of the increase in electron temperature due
to absorption of the non-equilibrium phonons. In the experiment, the electron temperature
was estimated to increase by about a Kelvin (to within an order of magnitude) from an
initial, ambient temperature of approximately 1 K. In the conductance change calculations,
therefore, we choose as initial and final electron temperatures, 1 K and 2 K respectively.
Discussion concerning the temperature increase is given in section 3.

2.1. Coulomb scattering from remote donor impurities

For the split-gate wire, we expect the electrons are predominantly scattered by the
remote donor impurities, since scattering by the gate edge roughness is suppressed due
to electrostatic smoothening of the roughness [13]. Assuming the donor impurities occupy
a plane parallel to the 2DEG with separationh, the inverse of the elastic backscattering
length for an electron with energyE initially in the Mth subband is approximately

lb−1
M (E) ≈ Z2e4m2

∗η
8πh̄4ε2

0κ
2
0

k−1
M (E)

∑
N

k−1
N (E)

×
∫ +∞

−∞
dqx |QMN(qx)|2

exp
[
−2h

√
q2

x + (kM(E) + kN(E))2
]

[√
q2

x + (kM(E) + kN(E))2 + qs

]2 (1)
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whereZe is the impurity charge,η the areal impurity concentration,m∗ the GaAs effective
electron mass,κ0 the GaAs static dielectric constant andqs = 2m∗e2/(h̄2κ0ε0) the 2D
Thomas–Fermi screening wavevector. The wavevectorkM and functionQ are defined as
follows:

kM(E) =
√

2m∗
h̄2 (E − EM) (2)

QMN(qx) :=
∫ +∞

−∞
dxeiqxxχ∗

M(x)χN(x) (3)

where χM(x) is the transverse part of the electron energy eigenfunction for the ideal
wire. We assume the transverse confining potential is approximately parabolic [11, 12]
and thereforeχM(x) is the energy eigenfunction of the harmonic oscillator with energy
EM = (M+1/2)h̄2/(m∗w2), M = 0, 1, 2, . . . wherew is the effective wire width, estimated
to be about 20 nm for the wire used in the experiment [1].

The Born approximation to the backscattering length, equation (1), is valid forE

satisfyingE − EM � h̄/τM(E), whereτM is the scattering time. For the backscattering
lengths we consider and for the above given wire width, there will be sufficient range of
validity between subband edges to be able to obtain the relevant qualitative features of the
conductance change.

In terms of the backscattering length (1), the wire conductance is (see the appendix for
a derivation and also reference [14])

C ≈ −2e2

πh̄

∫
dE

∂

∂E

(
1

eβ(E−EF) + 1

)
×

∑
M

(EM <E)

lb
M(E)

L

{
1 − lb

M(E)

L

[
1 − exp

(
− L

lb
M(E)

)]}
(4)

where L is the wire length andβ−1 := kBTe, with Te the electron temperature. Notice
that for lb

M � L, equation (4) gives the Drude conductance, while for the opposite regime
lb
M � L, we recover the finite length, ideal wire conductance.

For EF − EM � kBTe, we can expand (4) with respect tokBTe to obtain the change in
conductance due to the increase in electron temperature:

1C ≈ πe2

3h̄

∑
M

(EM <EF)

∂2

∂E2

{
lb
M(E)

L

[
1 − lb

M(E)

L

(
1 − exp

(
− L

lb
M(E)

))]}
E=EF

× [
(kBT f

e)2 − (kBT i
e)

2
]

(5)

whereT i
e and T f

e are the initial and final electron temperatures, respectively. The sign of
the conductance change1C is given by the sign of the second derivative with respect to
E of the quantity in curly brackets. For the 2DEG, the corresponding quantity isτ(E)E

which is proportional toEγ with 2 < γ < 2.5 for remote impurity scattering. Thus, if the
mobility of the 2DEG is sufficiently low such that impurity scattering dominates phonon
scattering, then an increase in mobility with increasing temperature will be observed [2, 3].

For the quantum wire, the conductance change behaviour is more complicated, a
consequence of finite-size effects and intersubband scattering, neither of which are significant
for the 2DEG. In figures 2 and 3, we show theEF dependences of theM = 1 backscattering
length and conductance change for a particular choice of scattering strength (i.e. impurity
concentrationη) and two different choices of electron gas-impurity layer separationh. In
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figure 3, theEF range starts just above theM = 1 subband edge and ends just below the
M = 2 subband edge. Notice that there are regions of both positive and negative1C.
Comparing the two figures, maximum positive1C occurs forlb

M=1 ∼ 0.1L. A decrease in
h causes a reduction in the maximum, demonstrating the importance of remote donors for
positive1C. To the right of the maximum,1C decreases, eventually becoming negative
when lb

1 is comparable to or larger thanL. To the left of the maximum,1C also becomes
negative. This is due to intersubband scattering, since a calculation with intersubband
scattering omitted is found to give positive1C.

Figure 2. The M = 1 backscattering length versusEF for different choices of electron
gas-impurity layer separationh. The backscattering length is given in units of wire length
L = 10 µm, while EF is given in units ofh̄2/2m∗w2 ≈ 2 × 10−22 J, so thatEM=1 = 3 and
EM=2 = 5. The solid line is for separationh = 40 nm, while the dashed line is forh = 20 nm.

Figure 3. The conductance change versusEF resulting from the temperature dependence of
Coulomb scattering from remote donor impurities. The solid line is forh = 40 nm, while the
dashed line is forh = 20 nm.



3126 M P Blencowe

2.2. Impurity scattering in the presence of electron–electron interactions

Fukuyama and co-workers [4, 5] have carried out a theoretical investigation of the effect
of the electron–electron interaction on the conductance of disordered quantum wires. The
results of the recent wire heating experiments of Tarucha and co-workers [6] appear to
support their theory. The electron–electron interaction gives rise to a temperature and
length dependent correction to the backscattering length (1):

l̃b−1
M (E, Te, L) = lb−1

M (E)FM(E, Te, L) (6)

where

FM(E, Te, L) ∼
(√

(kBTe)2 + (h̄2kM(E)/(m∗L))2

E − EM

)Kρ−1

. (7)

Notice that the temperature dependence weakens with decreasing wire length and for point
contacts we would have vanishing temperature dependence. Fork−1

M ∼ w ∼ 20 nm and
Te ∼ 1 K, the temperature and length terms in (7) become comparable whenL ∼ 1 µm.
Thus, forL = 10µm, the length term in (7) can be neglected and we have strong temperature
dependence. The exponentKρ is expected to be between 0.5 and 1 and therefore the
backscattering length increases with increasing temperature. We shall choose the same
value forKρ as that measured by Taruchaet al [6]: Kρ = 0.7.

The conductance change1C resulting from the temperature dependence of the electron–
electron correction term (7) is obtained by replacinglb by l̃b in the conductance formula
(4) and settingTe = 0 in the Fermi distribution. In figure 4, we show theEF dependence
of 1C for three different choices of scattering strength. TheEF range begins just above
the M = 1 subband edge and ends just below theM = 2 subband edge. Notice that1C

is positive. AsEF approaches theM = 1 subband edge from above,1C first increases
and then decreases with the peak in1C shifting towards the subband edge the weaker the
scattering strength.

Figure 4. The conductance change versusEF resulting from the temperature dependence of the
electron–electron interaction correction to the elastic impurity backscattering length. The three
different choices of scattering strength are identified by the value oflb

M=1 at EF = 4, half way
betweenE1(= 3) andE2(= 5).
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2.3. Weak localization with electron–electron phase relaxation

The weak localization contribution to the wire conductance is derived in the appendix. For
EF between theM = 1 andM = 2 subband edges, we have:

Cwl ≈ − e2

πh̄L

(
τ b−1

10 τ b
0 v2

0 + τ b−1
01 τ b

1 v2
1

τ b−1
10 τ

φ−1
0 + τ b−1

01 τ
φ−1
1

)1/2
∣∣∣∣∣
E=EF

(8)

where τ b−1
MN denotes the individual backscattering rate into theN th subband (i.e.τ b−1

M =∑
N τ b−1

MN , with τ b−1
M = lb−1

M h̄kM/m∗ ), τ
φ−1
M is the phase relaxation rate (we consider the

case where the phase relaxation length is smaller than the wire length) andvM = h̄kM/m∗
is the velocity. The ‘mixing’ of theM = 0, 1 channels in (8) is a consequence of the
non-negligible intersubband backscattering withlb

M given by (1).
In an ideal, single band quantum wire, the combined constraints of energy and

momentum conservation suppress electron–electron scattering. However, elastic scattering
from imperfections such as the fluctuating remote impurity potential will relax momentum
conservation, enabling electron–electron scattering to occur. Thus, which of the two inelastic
processes governs phase relaxation—electron–electron or electron–phonon scattering—will
depend on, among other things, how disordered the wire is. We will consider here the
conductance change resulting from the temperature dependence of the electron–electron
phase relaxation rate. A discussion of the conductance change due to electron–phonon
scattering is given in reference [10].

Altshuler et al [15] (see also references therein) derive the electron–electron phase
relaxation rate for a quasi-1D wire. Assuming their formula also applies (at least
qualitatively) to a wire with only a few occupied subbands, we have

τ
φ−1
M ∼

(
πkBTe

h̄

)2/3

τ
b−1/3
M . (9)

Substituting (9) into (8), we obtain for the conductance change:

1C ∼ e2

(π2h̄)2/3L

(
τ b−1

10 τ b
0 v2

0 + τ b−1
01 τ b

1 v2
1

τ b−1
10 τ

b−1/3
0 + τ b−1

01 τ
b−1/3
1

)1/2 [
(kBT i

e)
−1/3 − (kBT f

e)−1/3
]∣∣∣∣∣

E=EF

. (10)

The conductance change is clearly positive and decreases in magnitude asEF approaches
the M = 1 subband edge from above. This is due to increased scattering into theM = 1
subband. AsEF descends below the subband edge, the conductance change increases (before
decreasing again), since scattering into theM = 1 subband is suppressed.

2.4. Comparison of the different mechanisms with experiment

In the experiment [1], a positive conductance change was measured. We can therefore
confidently rule out Coulomb scattering from remote impurities as the dominant cause,
since this mechanism gives rise toEF regions of negative conductance change (figure 3).

The measured conductance change peaked forEF ∼ EM . From figure 4, we see that
impurity scattering in the presence of electron–electron interactions gives rise to a peak
which occurs to the right of a given subband edge. On the other hand, for weak localization
with electron–electron phase relaxation, the peak in the conductance change occurs to the
left of a given subband edge (note that electron–phonon phase relaxation gives similar
behaviour [10]). For both mechanisms, the weaker the scattering strength, the closer the
peak is to the subband edge. With these qualitative comparisons alone and for the given
accuracy of the experiment, however, it is not really possible to single out either of the
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two mechanisms as the dominant cause for the observed conductance change behaviour. A
magnetoconductance experiment is essential to distinguish the two.

3. Electron heating

In the previous section, we showed how an increase inTe can give rise to a positive
conductance change. If a separate calibration experiment is carried out in which the wire
conductance is measured as a function of ambient temperature and gate voltage with the
heater turned off, then the wire conductance can be used as a thermometer for the electron
temperature. The dependence ofTe on the heater temperature, heater geometry andEF

gives direct information concerning the quantum wire electron–phonon interaction. A partial
calibration for a few gate voltage values was in fact carried out [1]. At a heater temperature
Th ≈ 8.8 K and for a particular choice of gate voltage,Te was estimated to increase by
about 2.5 K above the ambient temperatureTa ≈ 1.3 K.

In order to properly determine the electron temperature increase, we must take into
account phonon focusing effects. The heater film lies in a{100} plane of the GaAs substrate
and the wire is located directly opposite the heater, so that it receives heater phonons with
momenta within some solid angle centred about a〈100〉 direction. However, there is strong
focusing in〈100〉 directions: the effective solid angle can be much larger than that set by
the heater size and heater-wire distance.

We shall determine the electron temperature by requiring that the net power absorbed
by the wire equal zero. The net absorbed power per unit wire length is approximately (see,
e.g., references [16, 17])

P ≈ 8π

L

∑
s,q

ωs(q)
∑
I,J,k

|MIJs(q)|2 δ
(
EI + (k + qy)

2/2m∗ − EJ − k2/2m∗ − h̄ωs(q)
)

×f
(
EI + (k + qy)

2/2m∗
) [

1 − f
(
EJ + k2/2m∗

)]
× [

ρs(q)eh̄ωs (q)/kBTe − (ρs(q) + 1)
]

(11)

where the electron–phonon matrix element is

MIJs(q) =
(

h̄

2ρωs(q)�

)1/2

4s(q)Z(qz)QIJ (qx). (12)

In (11), the first sum is over the phonon wavevectorq and the three phonon polarizations,
s = 0 (longitudinal), 1 (slow transverse) and 2 (fast transverse). We choose coordinates such
that they-axis runs along the wire and thez-axis is normal to the 2DEG. We assume the
wire is aligned in the [010] direction. The functionf (E) is the Fermi–Dirac distribution,
ωs(q) is the phonon frequency andρs(q) is the (non-equilibrium) phonon distribution. In
(12), ρ is the GaAs mass density andZ(qz) = ∫

dz exp(iqzz)ψ∗
0(z)ψ0(z) is the form factor

involving the part of the electron wavefunction perpendicular to the 2DEG. The form factor
Q is defined in (3).

The electron–phonon interaction is assumed to be the same as that for bulk GaAs:

4s(q) = iCq · ξs + 2h14e

q2
(qxqyξsz + qyqzξsx + qzqxξsy) (13)

whereC andh14 are the GaAs deformation potential and piezoelectric coupling constants,
respectively, andξs is the q-dependent phonon polarization vector. Differences between
the electron–phonon interaction in a bulk wire and in the quantum wire are therefore of
kinematic origin: the form factorQ limits the magnitude of theqx wavevector component
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of a phonon which can be absorbed or emitted by a wire electron to less than the inverse of
the wire widthw. The form factorZ similarly limits the magnitude of theqz wavevector to
less than the inverse of the 2DEG width. Furthermore, the combined constraints of energy
conservation and momentum conservation along the direction of the wire severely limit the
range ofqy components for which absorption and emission can occur.

Assuming the heater phonons traverse the heater-wire distance without scattering, the
phonon distribution at the wire is

ρs(q) = 2s(q)
(
eh̄ωs (q)/kBTh − 1

)−1 + [1 − 2s(q)]
(
eh̄ωs (q)/kBTa − 1

)−1
. (14)

The stepfunction2s(q) is equal to one (and zero otherwise) for allq such that the group
velocity vectorvs(q) (= ∇qωs(q)) with origin at the heater surface points towards the
wire. In figure 5, we give the phonon wavevector angular ranges for heater dimensions
1x × 1y = 100 µm × 10 µm and heater-wire distanceD = 380 µm, the same as for the
experiment [1]. Notice that for the transverse polarizations the angular range along the wire
direction is several times larger than the range which is obtained with the elastic anisotropy
neglected.

Figure 5. The boundaries of the phonon wavevector angular ranges for heater dimensions
1x ×1y = 100µm× 10 µm and heater–wire distanceD = 380µm. Theφ angle is along the
wire, while theθ angle is transverse to the wire. The angular coordinates are given in radians.
Only one quadrant is indicated, the others obtained by reflecting about theθ andφ axes. The
three phonon polarizations are: longitudinal (L), slow transverse (ST) and fast transverse (FT).
The angular range neglecting elastic anisotropy (NA) is also given.

Summing over the electron wavevectork and simplifying the temperature-dependent
terms, equation (11) becomes

P ≈ m∗
4π3ρh̄

∑
I,J,s

∫
dq|qy |−1|4s(q)Z(qz)QIJ (qx)|2
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×
[(

e(EIJs (q)−EF)/kBTe + 1
)−1 − (

e(EIJs (q)+h̄ωs (q)−EF)/kBTe + 1
)−1

]
×

{(
eh̄ωs (q)/kBTa − 1

)−1 − (
eh̄ωs (q)/kBTe − 1

)−1

+2s(q)
[(

eh̄ωs (q)/kBTh − 1
)−1 − (

eh̄ωs (q)/kBTa − 1
)−1

]}
(15)

where

EIJs(q) := h̄2

8m∗q2
y

[
q2

y + 2m∗
h̄2

(
h̄2

m∗w2
(I − J ) − h̄ωs(q)

)]2

+ h̄2

m∗w2
(J + 1

2) (16)

is the energy of an electron in theJ th subband which subsequently absorbs a phonon with
wavevectorq and scatters into theI th subband. Notice that, once the phonon wavector
q and subband labelsI and J are given, the initial and final energies of the electron are
completely fixed by energy and momentum conservation.

Examining the Bose–Einstein terms in equation (15), it is clear that forTh = Ta, we
must also haveTe = Ta in order thatP = 0. That is, when the heater is turned off, the
electron gas remains at the ambient temperature. If we haveTh > Ta, i.e. heater turned
on, then the term involving the step function is positive and thus we must haveTe > Ta in
order to cancel this term.

In figure 6, we give theEF dependence of the net absorbed power per unit wire length
for Th = 8.8 K and Te = Ta = 1.3 K. In figure 7, we give theEF dependence of the net
emitted (= − net absorbed) power per unit wire length forTh = Ta = 1.3 K and a selection
of valuesTe > Ta. Comparing the magnitudes of the curves in the two figures, we can see
that the predictedTe increase will be on the order of tens of mK, two orders of magnitude
smaller than the experimental value.

The EF dependences of the curves in figures 6 and 7 point towards the reason for
the low predicted temperature increase. Because the density of states of an ideal 1D wire
diverges at the subband edges, we expect the emitted and absorbed powers to peak at the
subband edges [17]. This is clearly the case for the emitted power in figure 7, while there
are no such peaks for the absorbed power in figure 6. To understand why this is so, let us
determine the condition energy conservation and momentum conservation parallel to wire
imposes on the phonon wavevector componentqy and frequencyωs(q) in order to have
absorption. ForTe ∼ 1 K andw ≈ 20 nm, we havekBTe � EM+1−EM and therefore, from
the Fermi–Dirac terms in (15), we see thatq must satisfyEIJs(q) ≈ EF for non-negligible
absorption. SupposeEF = EJ and consider intrasubband scattering, i.e.I = J . Then
solving (16) forqy in terms ofωs(q), we obtain the following condition

qy =
√

2m∗ωs(q)

h̄
. (17)

Approximatingωs(q) by cq, wherec is the average phonon phase velocity and noting also
from the Bose–Einstein terms in (15) that the dominant wavenumberq for heater phonons
is roughlykBTh/h̄c, condition (17) becomes:

qy

q
∼

√
m∗c2

kBTh
≈ 0.1 (18)

where we have used the valuesc = 5 × 103 m s−1 andT = 10 K. Therefore, in order to
have substantial absorption of heater phonons whenEF is at a subband edge, the effective
angular range of phonon momenta along the the wire must be somewhat larger than 0.1.
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Figure 6. The net absorbed power per unit wire length versusEF for Th = 8.8 K, Te = Ta = 1.3
K, heater dimensions1x × 1y = 100 µm × 10 µm and heater–wire distanceD = 380 µm.
The locations of the subband edges are given. Also shown are the individual contributions from
the dominant channels (dashed lines). The individual channels are labeled:sMN . For example,
012 stands for the absorption of a longitudinal phonon by an electron in theM = 1 subband,
causing it to undergo a transition to theN = 2 subband. The complicatedEF dependences are
a consequence of the peculiar effective heater geometry for FT phonons (figure 5).

Figure 7. The net emitted power per unit wire length forTh = Ta = 1.3 K and a selection of
valuesTe > Ta.

From figure 5, we see that this is not the case: because of the small1y heater dimension-
to-heater-wire distance ratio, most heater phonons do not have sufficientqy wavevector
components to be absorbed by the wire. There is clearly no such geometrical restriction for
emission, however.
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We can conceive of several possible explanations as to how the actual wire circumvents
this obstruction to phonon absorption:

(i) Disorder. As discussed in section 2, the real wire is disordered. One consequence of
disorder is to relax momentum conservation parallel to the wire for the process of absorption
or emission of a phonon by an electron. Therefore, condition (17) does not have to be strictly
satisfied. Disorder only affects the net absorbed power (11) provided ¯h/τM > kBTe [18].
For Te ∼ 1 K andw ≈ 20 nm, this gives for the mean free path:lM < 0.5 µm � L.

Figure 8. The net absorbed power per unit wire length versusEF for Th = 8.8 K, Te = Ta = 1.3
K, heater dimensions1x × 1y = 1500µm × 150 µm and heater–wire distanceD = 380 µm.
The dashed lines give the individual phonon polarization contributions.

(ii) Diffuse scattering.In the experiment, the time interval between the onset of heater
excitation and the instant at which the wire resistance is recorded just exceeds the heater–
wire traverse time for transverse phonons. This is so as not to have a contribution from
heater phonons which have reflected from the back surface (or sides) of the GaAs substrate.
However, on the wire side of the substrate, the separation between the electron gas and
the various interfaces, metal gates and substrate surface is of the order of nanometres.
Therefore, the time resolution of the resistance measurement is not fine enough to exclude
the contribution to the resistance change from heater phonons which have reflected from
the surface/interfaces on the wire side. Non-specular reflection will increase the range ofqy

wavevector components and thus such phonons may give a significant contribution to the
measured resistance change. Figure 8 illustrates clearly the effect of increasing theqy range
on theEF dependence of the net absorbed power; notice the sharp peaks at approximately
the subband edges. Figure 9 gives the angular ranges; notice that condition (18) is now
easily satisfied. Here, the increasedqy range is achieved by scaling up the dimensions of
the heater. Non-specular reflection will have a similar effect on the absorbed power.

(iii) Non-equilibrium electrons.We have made the simplifying assumption that the
electron gas is in thermal equilibrium during absorption of heater phonons. This requires
that the electron–electron scattering rate be larger than the electron–phonon scattering rate
for the considered heater temperatures. As was mentioned above, the electron–electron rate
for a quantum wire depends strongly on the wire disorder. Therefore, without knowing the
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Figure 9. The boundaries of the phonon wavevector angular ranges for heater dimensions
1x × 1y = 1500µm × 150 µm and heater–wire distanceD = 380 µm.

disorder strength (i.e. impurity scattering rate), it is not possible to estimate the electron–
electron rate for the wire used in the experiment. We can, however, estimate the change
in electron distribution ignoring completely impurity and electron–electron scattering and
compare the magnitude of this non-equilibrium change with that of the change obtained
assuming equilibrium. LetδfM(k, t) = fM(k, t) − f0(EM + k2/2m∗) denote the (time-
dependent) change in the electron distribution from the equilibrium distributionf0 at the
ambient temperatureTa. A straightforward application of kinetic theory gives approximately

δfM(k, t) ≈ T (k)Ce−ph[f0, δρ]
(
1 − e−t/T (k)

)
(19)

where T (k) = Lm∗/h̄k is the electron escape time from the wire† and we suppose the
heater pulse reaches the wire at timet = 0. The electron–phonon collision integral term is
(cf [19])

Ce−ph[f0, δρ] = 2π

h̄

∑
N,s,q

|MMNs(q)|2δρs(q, t)

× {
f0

(
EN + h̄2(k − qy)

2/2m∗
) [

1 − f0
(
EM + h̄2k2/2m∗

)]
×δ

(
EM + h̄2k2/2m∗ − EN − h̄2(k − qy)

2/2m∗ − h̄ωs(q)
)

−f0
(
EM + h̄2k2/2m∗55

) [
1 − f0

(
EN + h̄2(k + qy)

2/2m∗
)]

× δ
(
EM + h̄2k2/2m∗ − EN − h̄2(k + qy)

2/2m∗ + h̄ωs(q)
)}

(20)

where the change in phonon distribution from the ambient distribution is

δρs(q, t) = 2(t)2s(q)
[(

eh̄ωs (q)/kBTh − 1
)−1 − (

eh̄ωs (q)/kBTa − 1
)−1

]
. (21)

† I thank A Shik for pointing out the importance of the escape time.
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For k−1 ∼ w = 20 nm andL = 10 µm, the escape time isT ∼ 10−10 s, which is much less
than the timescale of the resistance measurement (tens of nanoseconds) and hence we can
neglect the exponential term in (19). Comparing the collision term (20) with the formula
(11) for the net absorbed power, we obtain the following rough estimate for the magnitude
of the distribution change when the electron energy is withinkBTe of EF:

|δf |
f0

∼ T Pw

kBTh
∼ 10−5 (22)

where the net absorbed power isP ∼ 10−9 W m−1 (see figure 6) andTh ∼ 10 K. From
(22), we see that the effective temperature increase will be much less than 1 K. Thus, even
supposing a non-equilibrium electron distribution, the discrepancy remains. (Note, also,
that including the energy loss due to electrons leaving the wire in the earlier analysis which
assumed thermal equilibrium will lower even further the estimated electron temperature
increase.)

(iv) Weak localization with electron–phonon phase relaxation.In contrast to the three
mechanisms discussed in the present paper, weak localization with electron–phonon phase
relaxation does not require a change in the electron distribution in order to produce a
resistance decrease. This is because the electron–phonon phase relaxation rate depends
directly on the non-equilibrium phonon distribution. In order to test this possibility, we
must go beyond the qualitative analysis of reference [10] and estimate the weak localization
contribution to the conductance. However, from equation (8) it is clear that such an estimate
is only possible provided we know the backscattering length.

4. Conclusion

We have investigated the interaction between a non-equilibrium acoustic phonon beam
and disordered quantum wire electron gas. In the experiment [1], it was found that such
an interaction caused the wire conductance to increase and, furthermore, peaks in the
conductance increase were observed at approximately the same gate voltage values as for the
conductance step edges. We showed that such behaviour is a consequence of electron heating
due to phonon absorption and the temperature dependence of either of the following two
disorder scattering mechanisms: (i) impurity scattering in the presence of electron–electron
interactions (figure 4), (ii) weak localization with phase relaxation governed by electron–
electron scattering (equation (10)). The temperature dependence of Coulomb scattering from
remote donor impurities was ruled out, because of the occurrence ofEF regions of negative
conductance change (figure 3).

The estimated electron temperature increase (figures 6 and 7) was much lower than that
found in the experiment. Because of the small size of the heater dimension parallel to the
wire, most heater phonons directly incident on the wire do not have enough momentum
component parallel to the wire in order to be absorbed by the electrons. One possible
resolution given, is to include in the model the contribution from phonons which have
reflected from the surface/interfaces closest to the wire. Non-specular reflection may result
in an increase in angular range sufficient to overcome the stringent constraints which energy
conservation and momentum conservation parallel to the wire place on absorption (figures
8 and 9).

In order to determine whether the conductance increase is due to electron–electron
modified impurity scattering or to weak localization, it is essential that magnetoconductance
measurements be carried out. Furthermore, the heater dimension parallel to the wire should
be made much larger, say 100µm instead of 10µm, so as remove energy/momentum
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conservation restrictions to the absorption of heater phonons directly incident on the wire.
The measured and predicted electron temperature increases should then be compared to
see if there is still a large discrepancy. Finally, using instead a laser beam focused onto
a spot on a metal film deposited on the back surface of the substrate to produce a non-
equilibrium phonon beam [20], we can explore more effectively the phonon momentum
angular dependence of the electron–phonon interaction.
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Appendix

We give here the derivation of the Drude+ weak localization approximation to the wire
conductance. A convenient starting point is the formulation of the conductance in terms of
the advanced and retarded single electron Green functions [21]:

C = e2h̄3

8πm2∗L2

∫ ∞

0
dE

∂

∂E

(
1

eβ(E−EF) + 1

)
×

∫ +∞

−∞
dx

∫ +L/2

−L/2
dy

∫ +∞

−∞
dz

∫ +∞

−∞
dx ′

∫ +L/2

−L/2
dy ′

∫ +∞

−∞
dz′

[
∂2
yy ′(G(+)(r, r′, E) − G(−)(r, r′, E))(G(+)(r′, r, E) − G(−)(r′, r, E))

+(G(+)(r, r′, E) − G(−)(r, r′, E))∂2
yy ′(G(+)(r′, r, E) − G(−)(r′, r, E))

−∂y(G(+)(r, r′, E) − G(−)(r, r′, E))∂y ′(G(+)(r′, r, E) − G(−)(r′, r, E))

− ∂y ′(G(+)(r, r′, E) − G(−)(r, r′, E))∂y(G(+)(r′, r, E) − G(−)(r′, r, E))
]

(23)

wherem∗ is the effective electron mass,L is the wire length andβ−1 := kBTe, with Te the
electron temperature. They-coordinate axis runs along the wire length, while thez-axis is
normal to the 2DEG. The overlines denote averaging over an ensemble of random impurity
distributions. In terms of the energy eigenfunctionsφn(r) and eigenvaluesEn, the single
electron retarded and advanced Green functions have the standard definitions:

G(±)(r, r′, E) :=
∑

n

φn(r)φ∗
n(r

′)
E − En ± iδ

. (24)

Changing from the coordinate basis to the ideal wire energy eigenfunction basisuM,k(r) :=
�−1/3eikyχM(x)ψ0(z), equation (23) becomes

C = 2e2h̄3

πm2∗�2/3L2

∑
k

sin2(kL/2)

k2

∫ ∞

0
dE

∂f

∂E

×
∑
M,g

g
(
K

(++)
MM (g, k, E) + K

(−−)
MM (g, k, E)

−K
(+−)
MM (g, k, E) − K

(−+)
MM (g, k, E)

)
(25)
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where� is a large normalizing volume,M denotes the transverse quantum number andK

is defined as

K
(ab)
MN (g, k, E) :=

∑
J,s

sG
(a)
MJ

(
g + 1

2k, s + 1
2k

)
G

(b)
NJ

(−g + 1
2k, −s + 1

2k
)
. (26)

The functionK satisfies the following equation

K
(ab)
MN (g, k, E) ≈ G

(a)

M

(
g + 1

2k
)
G

(b)

N

(
g − 1

2k
)

×
(

gδMN +
∑
I,J,q

UMINJ (q, E)K
(ab)
IJ (q − g, k, E)

)
(27)

whereU is the irreducible vertex function and

G
(±)

M (k, E) =
(

E − EM − h̄2k2

2m∗
± i

h̄

2τM(k, E)

)−1

. (28)

We have assumed here thatGMN ≈ GMδMN . This requires that the ideal wire subband
separation be much larger than the disorder broadening, i.e.

EM+1 − EM � h̄

τM

. (29)

To lowest (i.e. quadratic) order in the single scatterer potentialV (r) =
�−1 ∑

q V (q) exp(iq · r), the irreducible vertex function is

UMINJ (q, E) ≈ TMINJ (q) (30)

where

TMINJ (q) := η

(2π)2�1/3

∫ +∞

−∞
dqx

∫ +∞

−∞
dqz|V (qx, q, qz)|2|Z(qz)|2QMI (qx)Q

∗
NJ (qx). (31)

The constantη is the impurity concentration and the functionsZ and Q are defined as
follows

Z(qz) :=
∫ +∞

−∞
dzeiqzzψ∗

0(z)ψ0(z) (32)

QMN(qx) :=
∫ +∞

−∞
dxeiqxxχ∗

M(x)χN(x). (33)

If we make the simplifying assumption that the impurity potential is a delta function in
position space, thenT is independent ofq and substituting the right-hand side of equation
(27) into equation (25), we find that theT part drops out in the sums overg and k. The
sums are then straightforward to perform and we obtain for the conductance [14]:

C0 ≈ −2e2

πh̄

∫
dE

∂f

∂E

∑
M

lM(E)

L

{
1 − lM(E)

L

[
1 − exp

(
− L

lM(E)

)]}
. (34)

The scattering length is

lM(E) = h̄kM(E)

m∗
τM(E) (35)

where

kM(E) =
√

2m∗
h̄2 (E − EM) (36)
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is the wavenumber and

τ−1
M (E) ≈ m∗η|V |2

2π2h̄3

∑
N

k−1
N (E)

∫
dqxdqz|Z(qz)|2|QMN(qx)|2 (37)

is the scattering rate. The upper limit of the sum over the transverse quantum numberM

in (34) is set by the conditionEM < E. The upper limit for the sum in (37) is similarly
set. The Born approximation (37) is valid providedE − EM � h̄/τM(E).

We now obtain the weak localization contribution to the wire conductance. The
derivation outlined below is a straightforward generalization of the usual one for the
single subband case (see, e.g., reference [7]). Suhrke and Wilke [22] also consider the
multisubband case, but neglect the dependence of the scattering rate on theM-quantum
number.

Let us again assume that we have aq-independent scattering potential and also that

lM(E) � l
φ

M(E) < L (38)

wherel
φ

M is the phase relaxation length, given in terms of the velocityvM := h̄kM/m∗ and
phase relaxation timeτφ

M as

l
φ

M = vM

√
τMτ

φ

M. (39)

From equations (27) and (25), we obtain for the weak localization correction:

Cwl ≈ − e2h̄3

πm2∗�1/3L

∫
dE

∂f

∂E

∑
M,g,q

g(q − g)G
(+)
M (g, E)G

(−)
M (g, E)

×WM(q, E)G
(+)
M (q − g, E)G

(−)
M (q − g, E) (40)

where the overlines on theG’s have been omitted. The functionW denotes the sum over
all ‘fan’ diagram contributions to the irreducible vertex function and is given by

WM(q, E) =
∑
I,J

TMI5I (q, E)MIJ (q, E)TJM (41)

whereTMN := TMNMN (see equation (31)),

5I(q, E) :=
∑

k

G
(+)
I (k, E)G

(−)
I (k − q, E) (42)

and whereMIJ is the solution to the following equation

MIJ (q, E) = δIJ +
∑
K

TIK5K(q, E)MKJ (q, E). (43)

Performing the sum overg in (40), we obtain

Cwl ≈ e2

πh̄L

∫
dE

∂f

∂E

∑
M,I,J

τ−1
MIτI

(
π−1

∫
dqMIJ (q)

)
τ−1
JMτ 3

Mv2
M (44)

where the upper limits of the transverse quantum number sums are set as in (34) and where
τ−1
MN denotes the individual scattering rate into theN th subband, i.e.

τ−1
M (E) =

∑
N

τ−1
MN(E). (45)

Performing the sum overk in (42), with τ−1
M replaced byτ−1

M + τ
φ−1
M in (28), we obtain for

MIJ :

M−1
IJ (q) ≈ δIJ − τ−1

IJ τJ

(
1 − τJ

τ
φ

J

)
+ q2τ−1

IJ τ 3
J v3

J . (46)



3138 M P Blencowe

The final steps are the inversion of (46) to obtainMIJ and theq-integration in (44).
For the case where intersubband elastic scattering is negligible, i.e.τ−1

IJ ≈ τ−1
I δIJ , the

matrix inversion is straightforward and we obtain

Cwl ≈ e2

πh̄

∫
dE

∂f

∂E

∑
M

l
φ

M(E)

L
. (47)

Suppose, in addition to condition (29), we also havekBTe � EM+1 − EM and thatEF is,
say, somewhere in between (but not too close to) theM = 1 andM = 2 subband edges.
Then for non-negligible intersubband scattering, i.e.τ−1

IJ ∼ τ−1
I , we obtain from (46) and

(44)

Cwl ≈ e2

πh̄

∫
dE

∂f

∂E
L−1

(
τ−1

10 τ0v
2
0 + τ−1

01 τ1v
2
1

τ−1
10 τ

φ−1
0 + τ−1

01 τ
φ−1
1

)1/2

. (48)

Forq-dependent scattering potential, the conductance calculations are considerably more
involved. We assume that the above final expressions forC0 (equation (34)) andCwl

(equations (47) and (48)) still apply, provided we replace the scattering rate (37) in these
formulae with the transport or (equivalently) backscattering rate:

τ b−1
M (E) ≈ m∗η

4π2h̄3

∑
N

k−1
N (E)

∫
dqxdqz|V (qx, kM + kN, qz)|2|Z(qz)|2|QMN(qx)|2. (49)
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